高性能AI開発の一助に…「メタ認知」で超多次元の複雑な問題を簡単化

 科学技術振興機構(JST)と国際電気通信基礎技術研究所(ATR)、カリフォルニア州立大学ロサンゼルス校(UCLA)は2020年8月27日、「意識下の強化学習能力をメタ認知で開花させる」とする研究成果を共同発表した。

教育業界ニュース その他
メタ認知で意識下の活動パターンから選択、強化
  • メタ認知で意識下の活動パターンから選択、強化
  • 視覚刺激(ランダムドットパターン)の動きの向きの知覚判断とその確信度評定
  • おもな実験のデザイン:意識下の脳状態で決まる最適行動を強化学習する
  • 強化学習課題の実験結果:(左)2日目に最適行動がすでに選択できている(中)メタ認知能力が強化学習の成績を予測(右)確信度が高いと最適行動をより選択
  • 確信度と強化学習の進み具合が関連している
  • DLPFC(背外側前頭前野)とBG(大脳基底核)との結合が学習とともに強まる
 科学技術振興機構(JST)と国際電気通信基礎技術研究所(ATR)、カリフォルニア州立大学ロサンゼルス校(UCLA)は2020年8月27日、「意識下の強化学習能力をメタ認知で開花させる」とする研究成果を共同発表した。

 ATR脳情報通信総合研究所のAurelio Cortese主任研究員・所長の川人光男氏、UCLAおよび香港大学教授のHakwan Lau氏は、意識下の脳活動パターンが最適な行動を決めるような試行錯誤の賭けゲームを設定。「fMRIニューロフィードバック」という脳の活動を画像化・解析化する手法を使い、機械学習のひとつである「強化学習」についての実験を行った。

 その結果、ヒトは報酬を得るために自身の脳内の意識下の情報を読み取って利用し、成功失敗の情報だけから試行錯誤で強化学習できることを発見した。実験参加者が自身の視覚知覚判断についてより確信している場合ほど、ゲームでより最適行動を選択することもわかった。

 学習するにつれて、強化学習を司っている脳部位(大脳基底核)と、自分自身の心的な能力や認知過程を監視する「メタ認知」を司っている脳部位(背外側前頭前野)との間で、学習と確信度の情報が同期。メタ認知能力の重要な要素である「確信度」が、この学習過程に含まれ、最適な選択に寄与していることを明らかにした。

 研究グループでは、今回の結果について「脳がメタ認知を利用して、超多次元の複雑な問題を簡単化し、少数のサンプルだけから高速で効率的な学習をしていることを示している」と指摘。研究成果を「次世代のAI開発に有用な指針を与えるもの」と評価し、「脳科学とAIを融合させることにつながり、より高い性能のAIを開発するために有益である」としている。ヒトの脳で得られた今回の研究成果から、次世代AI学習アルゴリズムにおいても同様に、複雑な問題の解決にメタ認知が応用できる可能性が示されたという。

 研究成果は、イギリスのNature Communications誌に掲載予定。
《奥山直美》

【注目の記事】

編集部おすすめの記事

特集

page top

旬の教育・子育て情報をお届け!(×をクリックで閉じます)